✨Độ phát xạ

Độ phát xạ

phải|nhỏ| [[Thợ rèn sắt|Thợ rèn làm việc với sắt khi nó đủ nóng để mềm hơn và dễ gia công hơn, lúc đó sắt phát ra bức xạ nhiệt nhìn thấy rõ. ]] Độ phát xạ của bề mặt vật liệu là tỷ lệ của bức xạ nhiệt từ một bề mặt so với bức xạ từ một bề mặt đen lý tưởng ở cùng nhiệt độ. Bức xạ vật đen lý tưởng tuân theo định luật Stefan Muff Boltzmann. Còn bức xạ của vật liệu thực tế sẽ khác và thường nhỏ hơn bức xạ của vật đen lý tưởng ở cùng một nhiệt độ. Do vậy, tỷ lệ nêu trên là một số dương nhỏ hơn 1. Độ phát xạ càng gần 1 thì bề mặt càng có khả năng phát xạ mạnh bằng với vật đen tuyệt đối.

Như vậy, độ phát xạ thể hiện mức độ hiệu quả trong việc bức xạ nhiệt của vật thể. Bức xạ nhiệt là bức xạ điện từ. Với các vật thể thông dụng trong đời sống, có nhiệt độ gần với nhiệt độ môi trường sống trên Trái Đất, bức xạ nhiệt mạnh nhất ở vùng bước sóng hồng ngoại. Các vật thể nóng hơn thì bức xạ nhiệt của chúng mạnh ở vùng bước sóng ngắn hơn.

Bề mặt của một vật thể đen hoàn hảo (có độ phát xạ là 1) phát ra bức xạ nhiệt với công suất xấp xỉ 448 Watt trên một mét vuông ở nhiệt độ phòng (25 °C, 298,15K). Các vật thể thực tế sẽ bức xạ với công suất thấp hơn.

Độ phát xạ quan trọng cho một số ứng dụng:

  • Cửa sổ cách nhiệt - vào mùa lạnh, các bề mặt cửa sổ có thể bị mất nhiệt bởi dẫn nhiệt với không khí, nhưng chúng cũng mất nhiệt do bức xạ nhiệt. Cơ chế mất nhiệt thứ hai này rất quan trọng đối với các cửa sổ kính đơn giản, có độ phát xạ gần với giá trị tối đa là 1. "Cửa sổ Low-E" với lớp phủ phát xạ thấp trong suốt phát ra bức xạ nhiệt ít hơn so với cửa sổ thông thường. Vào mùa đông, những lớp phủ này có thể giảm một nửa lượng nhiệt bị thất thoát so với cửa sổ bằng kính không tráng phủ.

phải|nhỏ| [[Làm nóng nước bằng năng lượng mặt trời|Hệ thống sưởi ấm nước bằng năng lượng mặt trời dựa trên các bộ thu ống thủy tinh chân không. Ánh sáng Mặt Trời được hấp thụ bên trong mỗi ống bởi một bề mặt chọn lọc. Bề mặt hấp thụ ánh sáng Mặt Trời gần như hoàn toàn, nhưng có độ phát xạ nhiệt thấp nên mất rất ít nhiệt. Các bề mặt đen thông thường cũng hấp thụ ánh sáng Mặt Trời khá hiệu quả, nhưng chúng lại bức xạ nhiệt rất nhiều. ]]

  • Bộ thu nhiệt mặt trời - các hệ thống làm nóng nước bằng năng lượng Mặt Trời có thể bị thất thoát nhiệt do bức xạ nhiệt. Bộ thu năng lượng mặt trời tiên tiến kết hợp các bề mặt chọn lọc có độ phát xạ rất thấp. Những bộ thu này lãng phí rất ít năng lượng Mặt Trời bị thoát ra do bức xạ nhiệt.
  • Che chắn nhiệt - Để bảo vệ các cấu trúc, như tàu vũ trụ, hoặc máy bay siêu âm, khỏi nhiệt độ bề mặt cao, có thể sử dụng các lớp phủ có gốm cách nhiệt cộng với lớp bên ngoài phát xạ cao (HEC), với các giá trị phát xạ gần 0,9. Điều này tạo điều kiện làm mát bức xạ và bảo vệ cấu trúc bên dưới. Đây là một phương án thay thế cho cách làm mát bằng lớp phủ bốc bay, vốn được sử dụng trong buồng đổ bộ dùng một lần.
  • Nhiệt độ hành tinh - các hành tinh là các hệ thống thu nhận năng lượng Mặt Trời trên quy mô lớn. Nhiệt độ của bề mặt hành tinh được xác định bởi sự cân bằng giữa nhiệt lượng mà hành tinh hấp thụ từ ánh sáng Mặt Trời, với nhiệt phát ra từ lõi của nó và bức xạ nhiệt trở lại không gian. Độ phát xạ của một hành tinh được xác định bởi bản chất của bề mặt và bầu khí quyển của nó.
  • Đo nhiệt độ - nhiệt kế bức xạ và camera hồng ngoại là những công cụ dùng để đo nhiệt độ của một vật thể bằng cách sử dụng bức xạ nhiệt của nó; mà không cần phải chạm vào vật thể. Việc hiệu chuẩn của các dụng cụ này liên quan đến độ phát xạ của các bề mặt được đo.

Định nghĩa toán học

Độ phát xạ bán cầu

Độ phát xạ bán cầu của một bề mặt, ký hiệu là ε, được định nghĩa là

: \varepsilon = \frac{M\mathrm{e{M\mathrm{e}^\circ},

với

  • Me là nhiệt lượng thoát ra từ bề mặt đó;
  • Me° là nhiệt lượng thoát ra từ bề mặt vật thể đen ở cùng nhiệt độ và cùng cấu trúc hình học.

Độ phát xạ phổ bán cầu

Độ phát xạ phổ bán cầu theo tần sốđộ phát xạ phổ bán cầu theo bước sóng của một bề mặt, ký hiệu là ενελ tương ứng, được định nghĩa là Ánh sáng nhìn thấy có bước sóng khoảng 0,4 đến 0,7 × 10-6 mét.

Các phép đo độ phát xạ cho nhiều bề mặt được ghi chép lại trong nhiều tài liệu. Một số trong số này được liệt kê trong bảng sau. phải|nhỏ| Hình ảnh của một khối nhôm Leslie. Các bức ảnh màu được chụp bằng camera hồng ngoại; những bức ảnh đen trắng bên dưới được chụp bằng một chiếc máy ảnh thông thường. Tất cả các mặt của khối lập phương có cùng nhiệt độ khoảng . Mặt của khối lập phương được sơn màu đen, và cả mặt được sơn màu trắng, đều có độ phát xạ lớn, được biểu thị bằng màu đỏ trong ảnh hồng ngoại. Mặt được đánh bóng của khối lập phương có độ phát xạ thấp được biểu thị bằng màu xanh lam và phản chiếu hình ảnh của bàn tay ấm.

Ghi chú:

Những độ phát xạ này là tổng độ phát xạ bán cầu từ các bề mặt.

Các giá trị của độ phát xạ nêu trên được đo cho các lớp vật liệu có độ dày quang học lớn. Điều này có nghĩa là độ hấp thụ ở bước sóng điển hình của bức xạ nhiệt không phụ thuộc vào độ dày của vật liệu. Vật liệu rất mỏng bức xạ nhiệt ít hơn vật liệu dày hơn.

Độ hấp thụ

Có một mối quan hệ cơ bản, thông qua định luật bức xạ nhiệt năm 1859 của Gustav Kirchhoff, giữa độ phát xạ của một bề mặt và độ hấp thụ của cùng bề mặt này: chúng luôn bằng nhau.

Định luật Kirchhoff giải thích tại sao độ phát xạ không thể vượt quá 1, vì độ hấp thụ lớn nhất - tương ứng với sự hấp thụ hoàn toàn tất cả bức xạ chiếu tới, bởi một vật thể đen tuyệt đối - cũng là 1.

Ngoại trừ các bề mặt kim loại trần, được đánh bóng, vẻ bề ngoài của một bề mặt, qan sát bởi mắt thường, không giúp dễ dàng đánh giá độ phát xạ ở nhiệt độ phòng. Ví dụ, tuy sơn trắng hấp thụ rất ít ánh sáng nhìn thấy được, nhưng, ở bước sóng hồng ngoại 10x10-6 mét, sơn nói chung và sơn trắng nói riêng lại có thể hấp thụ bức xạ hồng ngoại rất tốt và có độ phát xạ cao. Tương tự, nước tinh khiết hấp thụ rất ít ánh sáng khả kiến, nhưng nó lại là chất hấp thụ hồng ngoại mạnh và có độ phát xạ cao tương ứng.

Độ phát xạ phổ định hướng

Ngoài độ phát xạ bán cầu tổng cộng được biên soạn trong bảng trên, cũng có các phép đo độ phát xạ phổ định hướng phức tạp hơn. Độ phát xạ này phụ thuộc vào bước sóng và góc tới của bức xạ nhiệt. Định luật Kirchhoff vẫn áp dụng một cách chính xác cho độ phát xạ phức tạp hơn này: độ phát xạ theo một hướng cụ thể, và ở một bước sóng cụ thể, bằng với độ hấp thụ tại cùng hướng và bước sóng. Độ phát xạ bán cầu tổng cộng là trung bình có trọng số của độ phát xạ phổ định hướng; được mô tả bởi sách giáo khoa về "truyền nhiệt bức xạ".

Đơn vị SI đo bức xạ